Exploring Bag of Words Architectures in the Facial Expression Domain

نویسندگان

  • Karan Sikka
  • Tingfan Wu
  • Joshua Susskind
  • Marian Stewart Bartlett
چکیده

Automatic facial expression recognition (AFER) has undergone substantial advancement over the past two decades. This work explores the application of bag of words (BoW), a highly matured approach for object and scene recognition to AFER. We proceed by first highlighting the reasons that makes the task for BoW differ for AFER compared to object and scene recognition. We propose suitable extensions to BoW architecture for the AFER’s task. These extensions are able to address some of the limitations of current state of the art appearance-based approaches to AFER. Our BoW architecture is based on the spatial pyramid framework, augmented by multiscale dense SIFT features, and a recently proposed approach for object classification: locality-constrained linear coding and max-pooling. Combining these, we are able to achieve a powerful facial representation that works well even with linear classifiers. We show that a well designed BoW architecture can provide a performance benefit for AFER, and elements of the proposed BoW architecture are empirically evaluated. The proposed BoW approach supersedes previous state of the art results by achieving an average recognition rate of 96% on AFER for two public datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Recognition of Facial Expression Based on Computer Vision

Automatic facial expression recognition from video sequence is an essential research area in the field of computer vision. In this paper, a novel method for recognition facial expressions is proposed, which includes two stages of facial expression feature extraction and facial expression recognition. Firstly, in order to exact robust facial expression features, we use Active Appearance Model (A...

متن کامل

Facial Expression Recognition Based on MILBoost

In this paper, We use Adaboost to create MILBoost and propose a new MILBoost approach to automatically recognize the facial expression from video sequences by constructing the MILBoost methods. At first, we determine facial velocity information using optical flow technique, which is used to charaterize facial expression. Then visual words based on facial velocity is used to represent facial exp...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Synthesis of human facial expressions based on the distribution of elastic force applied by control points

Facial expressions play an essential role in delivering emotions. Thus facial expression synthesis gain interests in many fields such as computer vision and graphics. Facial actions are generated by contraction and relaxation of the muscles innervated by facial nerves. The combination of those muscle motions is numerous. therefore, facial expressions are often person specific. But in general, f...

متن کامل

Intelligent Detection of Facial Expression Based on Image

Human facial expressions detection plays a central role in pervasive health care and it is an active research field in computer vision. In this paper, a novel method for facial expression detection from dynamic facial images is proposed, which includes two stages of feature extraction and facial expression detection. Firstly, Active Shape Model (ASM) is used to extract the local texture feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012